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COUPLED PROBLEM OF HEAT TRANSFER, HYDRODYNAMICS, 

AND SOLIDIFICATION IN A }~LT 

Yu. A. Samoilovich and L. N. Yasnitskii UDC 536.252 

A mathematical model is constructed which describes thermal and hydrodynamic pheno- 
mena accompanying the solidification process in a melt. The equations of hydrody- 
namics take into account viscoelasticity and compressibility of liquid metal. An 
example of calculations pertaining to solidification of an ingot is given. 

Motion of the melt in the still liquid part of a crystallizing ingot greatly affects 
the quality of the metal product. Many studies have, therefore, been made concerning con- 
vective flow in the liquid core of ingots [1-7]. 

In several studies [1-6] the equations of heat conduction and of melt motion were solved 
independently of the solidification problem, i.e., for a given configuration and with the 
interphase boundaries moving according to a given law. In one study [7] a mathematical model 
has been proposed which, through a coupled formulation of the problems of hydrodynamics, heat 
transfer, and solidification, accounts for the interdependence between the form of the 
crystallization front and the mode of thermogravitational convection developing in the liquid 
phase of the ingot, both varying in time. A numerical simulation of this model [7] is 
filled with additional difficulties in connection with satisfying the Stefan condition at 
a movable and generally curvilinear crystallization front. In this study we will supplement 
the coupled formulation of those problems with the concept of a two-phase zone [8] and will 
account for the release of the latent heat of crystallization within this zone by stipulat- 
ing an effective (apparent) specific heat. 

In the previous studies [1-7] the flow of liquid steel was calculated through solution 
of the system of Navier--Stokes equations. At large temperature drops typical of metallur- 
gical processes, the flow of the melt ceases to be laminar, however, and becomes a nonsteady 
fluctuating one. Under these conditions, moreover, the liquid can exhibit properties not 
included in the Navier--Stokes law. We propose to replace the Navier--Stokes equations with 
equations of motion based on the Maxwell law of viscoelasticity and an equation of state of 
the medium involving a pressure dependence of the density, i.e., accounting for the compres- 
sibility of the medium. 

In this way the coupled problem of heat transfer, hydrodynamics, and melt solidification 
is formulated in three segments: 

i) problem of heat transfer involving the liquid phase and the solid phase of an ingot 
and taking into account the release of heat of phase transition within the liquidus-- 
solidus temperature range TZ-Ts; 

2) problem of hydrodynamics involving the motion of a compressible viscoelastic liquid 
in the still unsolidified part of the ingot and taking into account a nonuniform tem- 
perature profile as well as the attendant Archimedes body forces; 

3) conditions of coupling between the thermal problem and the hydrodynamic problem at 
the interphase boundary. 
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Fig. I. Schematic diagram of the velocity profile streamlining 
the crystallization front. 

Fig. 2. Schematic diagram depicting the process of electroslag 
smelting: i) fusible electrodes; 2) slag pool; 3) metal pool; 
4) two-phase zone; 5) solidified ingot; 6) crystallizer. 

The problem of heat transfer in an unsolidified ingot will be formulated on the basis 
of the equation of transient heat conduction [8] 

dT "dXg 
9 o C - -  = LV ~T -t- poL -- , (1) 

d'~ d'~ 
w r i t t e n  in  t he  s y s t e m  of  r e c t a n g u l a r  C a r t e s i a n  c o o r d i n a t e s  x ,  y ,  z and t i m e  z .  

The r e l e a s e  o f  t he  l a t e n t  h e a t  o f  c r y s t a l l i z a t i o n  w i t h i n  t h e  s o l i d - - l i q u i d  zone i s  con -  
v e n i e n t l y  a c c o u n t e d  f o r  by  i n t r o d u c t i o n  o f  t he  e f f e c t i v e  s p e c i f i c  h e a t  Ce f (T  ) .  For  t h i s  we 
l e t  

dT OT dT 
- -  --  - -  (2)  
d'~ OT d'~ 

and transform Eq. (i) to 

Here 

dT L 

dx 9oCef (T) 
vZT. (3) 

c!, at T >  Tt, 

Cef (T) -6 cz L 0~F = - -  at T ~ T ~ . ~ T I ,  (4)  
2 OT 

at T < T s. 

The dependence of quantity ~ on the temperature T in the solid--liquid zone was analyzed 
in an earlier study [9]. 

We now proceed to derive the appropriate differential equations of motion, regarding 
the melt in the liquid core of an ingot as a compressible viscoelastic fluid. Accordingly, 
we write the equation of dynamics for a continuous medium [i0] as 

dV (5) 
P 7~-~: = pF %- div P. 

We then differentiate Eq. (5) with respect to time and multiply both sides by the con- 
stant T R characterizing the relaxation time in the medium 

do dV __d2V RF d p _ _  dF ( d P )  
"OR d'~ d~; -}- ~n p dxZ ~ -t- "~n ~ + div "~R ~ �9 (6) 

Combining Eqs .  (5) and ( 6 ) ,  we have  
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Fig. 3. Field of isotherms in the two-phase zone 
and of stream l ines  in the l i qu id  (a) ,  p r o f i l e  of 
temperature T, ~ over pool height in sections I, 
II, III, IV (b), profile of longitudinal velocity 
V z in section A--A (c) for a sheet ingot produced 
by electroslag smelting with a 120~ superheat of 
the pool surface and a droplet shower at distance 
x, from the ingot axis; x, z, m; Vz-10, m/set. 

9 ~ -~T + ~ d'G I -[- "~ R d'~ d~ - p F+~R-~-~ +~RF-~-~ +d iv  P -i- T R --d-~-~ " (7) 

The relation between the stress tensor P and the strain rate tensor S will be deter- 
mined from the three-dimensional Maxwell law of rheology written for a compressible isotro- 

pic medium 

P + T  R - - 2 ~ S - -  p + ~ R - ~ - + - ~ -  btdivY E. (8) 
d~ 

I n s e r t i n g  expression (8) in to  Eq. (7) y i e lds  

-~T -~- TR d'~2 ] + T'R d'~ d'~ -- P F ~- T'R ~ :6 "cR F d'~ - -  V P + "~ ~ +~Vzv-? -~- ~v(divV). (9) p 

When the fluid is located in the gravitational force field, then F must be stipulated 
as the gravitational acceleration g. When the density of the fluid is nonuniform in space, 
owing to a nonuniform temperature distribution, then motion is induced in the fluid which 
has been called thermogravitational convection. The derivation of well-known equations of 
thermogravitational convection for an incompressible viscous fluid [ii] is based on a linear 
temperature dependence of the density 

P = Po (1 -- [3T), (10) 

where B is the coefficient of thermal expansion. The pressure dependence of the density 
has been disregarded here, inasmuch as it is unrelated to the mechanism of thermogravita- 
tional convection [II]. Inserting expression (i0) into Eq. (9) and considering that non- 
uniformity of the melt density is taken into account only in determination of the lift 
force (as in the Boussinesq approximation [ii]), we obtain the equation of motion for a 
viscoelastic fluid in the gravitational force field 

dV ~_,vRd2V: l ( _~_$) 1 vv(divV ). (11) d~; d~ z -- g (I -- ~T) -- "c R g~ dT 
- - -  d'~ Po V P + V n  -~vV 2V-~ 

We can reduce the order of the differential Eq. (ii) by introducing the concept of fluid 
acceleration W: 
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Fig. 4. Field of isotherms in the two-phase zone 
and of stream lines in the liquid (a), profile of 
temperature T, ~ over pool height in sections I, 
II, III, IV (b), profile of longitudinal velocity 
Vz, m/sec in section A--A (c) for a sheet ingot 
produced by electroslag smelting with a 70~ 
superheat of the pool surface. 
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so that 

W - -  dY (12) 
dz 

dW --- V P -  '~n ~ + W = ('I - -  ~T) g - -  T R g~; dTd~ ool "~Oo 
dp 

V ~  + ' : V  W + T v d i v v ,  w = ~/Po. (13) 

In order to close the system of equations, it is necessary to add the equation of con- 
tinuity 

ao + div (pV) = 0 
0z 

and t he  e q u a t i o n  of  s t a t e  f o r  a c o m p r e s s i b l e  f l u i d  

(14) 

p = p0(1 + ~p). (15) 

They combine into the single equation 

d~ -- P div V. (16) 

The e q u a t i o n  of  mot ion  (13) can be t r a n s f o r m e d  w i t h  the  a i d  o f  Eqs. (3) and ( 1 6 ) ,  v i z .  

dW g _  ~ n g ~  V 2 T - -  V P +  v(pdivVJ + V + W = (1 - -~T)  poCef(T) p_~_+ div V + ~vzV. (17) 

We now resolve the total derivatives with respect to time into their local and convec- 
tive parts, whereupon we reduce the resulting system of equations to dimensionless form. We 
select the characteristic linear dimension of the integration region S as the unit of dis- 
tance measurement, S2/u for time, u/S for velocity, v=/S ~ for acceleration, ATe for temper- 
ature, and po~2/S 2 for pressure so that 

0W 1 7NGr NGr 1 
0-~- + (VV) W -  --NRs W~-  NRs T q - y  ~ V 2T - -NRs  VP 

( l_j__ + l_J__'~ 1 NG___ ! 
+ V  (P div V) + k Nj r 3NRs ] V div V + ~ VW. - -  ~ Np~ ' (18) 

1.380 



a_v + (Vv) v = w, (19) 
& 

OT q- Vv T 1 _ _  = v 2 T ,  ( 2 0 )  
OT N Pr 

ovOP -k V V p  = - -  P + ~ - j  d iv  V.  ( 2 1 )  

Equations (18)-(21) have been written in dimensionless velocity, acceleration, temper- 
ature, and pressure and all derivatives have been taken with respect to dimensionless space 

coordinates and time. 

This system of equations (18)-(21) describing the behavior of a compressible viscoelas- 
tic fluid in the gravitational force field contains five dimensionless parameters: Grashof 
number NGr=g~AToS3/~ 2, Galileo number NGa=gS3/~ 2, Prandtl number Npr=~0oCef(T)/%, and Nj = 

2 apo~ /S 2, NRs =TRY/$2 which can be called compressibility number and relaxation number, 
respectively. We note that with the last two numbers equal to zero the system of equations 
(18)-(21) reduces to the conventional Boussinesq approximation describing the thermogravita- 
tional convection in an incompressible viscous fluid [ii]. 

We now supplement the system of equations (18)-(21) with the condition of "stagnation" 

V : O ,  W : 0  at T~TE (22 )  

and the boundary condition at the interface between the two-phase zone and the stream of melt 
flowing along the crystallization front [2] 

V ~ l OF .= 0 at T ---- T l. ( 2 3 )  

T h i s  b o u n d a r y  c o n d i t i o n  g e n e r a l i z e s  t h e  b o u n d a r y  c o n d i t i o n  o f  a d h e s i o n  and  r e f l e c t s  t h e  
effect of a dendrite structure of the crystallization front on the velocity profile in the 
boundary layer. The velocity profile V near the crystallization front is shown schematically 
in Fig. i, where the dimension I denotes the depth of the part of the solid--liquid transi- 
tion zone dragged by the stream. Condition (23), moreover, is satisfied by a linear velo- 
city profile 

The thickness I of the drag layer is defined as the distance between the liquidus iso- 
therm (T=T l) and the pourability isotherm (T=TE), as it pertains to the solution of the 
heat-conduction problem. 

The algorithm of the solution is constructed so that Eqs. (18)-(21) are simultaneously 
solved over the entire region of concern (encompassing the solid zone and the liquid zone as 
well as the transition zone), but condition (22) is satisfied on each time step by equating 
the velocity and the acceleration in the solid part of the ingot (TI<--TE) to zero (stagnation). 
Condition (23) accounts for the effect of a dendrite structure of the crystallization front, 
viz. a lower velocity of liquid metal within the two-phase zone of a solidifying ingot. 

Here is an example of using this method, with Nj =0 and NRs =0 as a special case, for 
mathematical simulation of the ingot solidification process in a bifilar-type electroslag 
smelting furnace [12]. The basic scheme for producing a flat ingot of thickness 2S =0.4 m 
by the method of electroslag smelting is shown in Fig. 2. The origin of the moving system 
of coordinates has been placed at the center of the free surface of the melt in the metal 
pool and the z axis has been directed downward along the ingot axis. For calculations is 
selected the right-hand half of the ingot, bounded at the top by the free surface of the melt 
and at the bottom by the horizontal plane at the distance H = 0.3 m from the origin of coor- 
dinates. 

The boundary conditions for the problem of producing an ingot by electroslag smelting 
are more conveniently put in a dimensional form. At the surface of the metal pool we assume 
a temperature distribution 

T = TE -]- ATo [1 - -  (x/S) m] at z = 0, (24 )  
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where ATo = const is the maximum temperature drop across the free surface of the melt and 
m = const is a power exponent ranging from 2 to i0. 

At the lateral surface of the ingot we use the Newton--Rikhman boundary condition 

o r  I = - -  
T c o o l ) ,  Ox Ix=S 

(25) 

and at its axis we use the condition of a symmetric temperature profile 

0T 
--0 at x=0, (26) 

0x 

while at the bottom section we use the so-called condition of ingot extendability (condition 
of thermal contact with the fictitiously discarded lower part of the ingot) 

02T : 0  at z : H .  (27) 
0z ~ 

The boundary conditions for the velocity and acceleration field at the surface of the 
metal pool follow from the hypothetical absence of viscous friction forces here and also 
from the assumption that the slag--metal boundary remains plane, viz. 

OVx_o, V z=O, OW=._O, W z=O at z = 0 .  (28) 
Oz Oz 

At the  i n g o t  ax i s  we s t i p u l a t e  symmetry of  t he  v e l o c i t y  p r o f i l e  and the  a c c e l e r a t i o n  p r o f i l e  

Vx=O, OVz --0, Wx=O, aWz = 0  at x = O .  (29) 
Ox Ox 

The pressure distribution over the boundaries of the region selected for calculations 
depends on the overall pattern of motion and should be determined during solution of the 
hydrodynamic problem. From this standpoint, we find applicable the condition of a zero 
normal derivative of pressure at all boundaries of this region 

Op --0. (30) 
On 

The shower of droplets falling from the fusible electrodes on the surface of the metal pool 
is distributed over some area of that surface. One can reasonably assume that the region 
of maximum shower intensity stretches along the axis of the electrodes and thus at a dis- 
tance x, from the plane of symmetry of the ingot (Fig. 2). On the basis of data obtained 
by observation of droplets passing into the melt [13-15], one can approximately describe 
the attenuation of the vertical velocity component V z by the exponential relation 

Vz = Voexp - - ~  at x = x , .  ( 3 1 )  

For a numerical solution of the problem on the basis of this mathematical model, we 
used the method of finite elements [16] together with a technique of smoothing in space and 
averaging in time analogous to the technique used in another study [17]. 

The results of such a simulation of the steady-state mode of casting by electroslag 
smelting with an initial fusion rate of 0.5.10 -4 m/sec are shown in Fig. 3 in the form of 
the field of liquid-metal stream lines, of the two-phase zone, of the temperature field and 
the velocity field in ingot sections. For the calculations, the following empirical con- 
stants and physical characteristics of carbon steel were used: ATo = 120~ m =5, King =500 
W/(m2.K), Tcool =300~ x, =3/8 S, n =1.25, Vo =0.15 m/sec, TZ =1783~ T s =1733~ T E = 
1773~ (this pourability temperature corresponds to the state of the metal in which an ele- 
mentary volume within the two-phase zone contains 30% solid phase: ~=0.3), po =7"i03 kg/m 3, 
c s =600 J/(kg.K), c I =800 J/(kg-K), 1=29 W/(m.K), 8 =0.17 "10-3 K -I, L =272,000 J/kg, and 
=0.6.10 -6 m2/sec. 

The diagram in Fig. 3 indicates that circulation of the melt in the metal pool has 
resulted in a noticeable nonuniformity of the temperature distribution over an ingot section. 
While in section I (along the ingot axis x = 0) most of the metal superheat relaxes at the 
upper horizontals in the metal pool, in section III (along the electrode axis x =x,) the 
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superheated metal spreads rather deeply. The diagram in Fig. 3 also shows a cavity produced 
at the bottom of the metal pool by the heat which the droplet shower carries from the free 
surface deeper into the melt. 

The diagram in Fig. 4 shows the results of simulation of thermogravitational convection 
in the melt (ATo = 70~ which can occur in the metal pool of the ingot during the final 
stage of the electroslag smelting process, when the droplet shower has already ceased (con- 
dition (17) is not used in the simulation) but the liquid lune has not yet solidified. The 
weak convection streams produced here by Archimedes body forces, unlike those in the preced- 
ing case, have no noticeable effect whatsoever on the temperature field of the metal pool. 

In the course of calculations the local temperature gradients in the metal at various 
points of the pool were determined, with and without convection taken into account, where- 
upon the ratio s = Xeff/% was calculated (%eff denoting the so-called effective thermal con- 
ductivity generally used for simplified engineering calculations and characterizing the 
increase of thermal conductivity of the melt due to intense stirring, and X denoting the 
molecular thermal conductivity of the melt). According to the calculations, ~ = 1.2 in the 
case of thermogravitational convection and e = 4.2 in the case of forced circulation of the 
melt by action of a droplet shower. 

Formulation and solution of the coupled problem of heat transfer, hydrodynamics, and 
solidification thus makes it possible to calculate temperature and hydrodynamic fields 
taking their interdependence into account, and to predict the form of the crystallization 
front depending on the degrees of superheat of the free surface and on the intensity of 
circulation of liquid metal in the unsolidified part of the ingot. 

NOTATION 

x, y, z, rectangular Cartesian coordinates; T, time; V, velocity vector with components 
Vx, Vy, Vz; W, acceleration vector with components Wx, Wy, Wz; p, density of the medium; Po, 
density of the medium at temperature To and under pressure Po; T, temperature defined as 
the difference between the actual temperature and the initial temperature To; p, pressure 
defined as the difference between the actual pressure and the initial pressure po; ~ =Qs/Q, 
relative amount of solid phase; Qs, volume of solid phase contained in an elementary volume 
Q; Tl, liquidus temperature; T s, solidus temperature; TE, pourability temperature, corres- 
ponding to the state in which the two-phase zone contains a definite amount of solid phase 
(e.g., ~=0.3); c, specific heat; ~, thermal conductivity; ~, dynamic viscosity; ~, kine- 
matic viscosity; L, specific heat of crystallization; Cef, effective specific heat; c~, 
specific heat of the liquid phase; Cs,.specific heat of the solid phase; F, density of body 
force distribution; P, stress tensor; S, strain tensor; TR, relaxation time; E, tensor unit; 
g, gravitational acceleration; ~, coefficient of thermal expansion; ~, isothermal compressi- 
bility factor; 2S and H, width and the height of the region selected for calculations; ATo, 
maximum temperature drop; y, unit vector in the upward vertical direction; NGr , Grashof 
number; NGa , Galileo number; Npr , Prandtl number; Nj, compressibility number; NRs, relaxa- 
tion number; Tcool , temperature of the medium cooling the crystallizer; King , heat-transfer 
coefficient at the lateral surface of the ingot; Tsu r =T(S, z), temperature of the lateral 
surface of the ingot; q, a coefficient characterizing the penetration depth of droplets in 
the melt; H M, depth of the metal pool; 2x,, distance between electrodes; Vo, initial velocity 
of droplets; and s = Xeff/X, ratio of effective to molecular thermal conductivity. 
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ONE APPROACH TO SOLVING REVERSE 

PROBLEMS OF HEAT CONDUCTION 

Yu. M. Matsevityi UDC 536.24 

Ways are proposed to identify the thermophysical parameters in nonstandard situa- 
tions (heat transfer in the case low external thermal resistances, thermal con- 
ductivity of thin coatings). 

The class of reverse problems of heat conduction is rather large, it includes external 
or boundary problems (determination of boundary conditions from the known mathematical model 
and available data on the temperature field in the given object), internal or coefficient 
problems (identification of thermophysical characteristics from available data on the boun- 
dary conditions and the temperature field), geometrical problems (determination of the geo- 
metrical characteristics of a thermal object), model or inductive problems (refinement of 
the mathematical model), and finally time or retrospective problems where the initial or 
simply earlier thermal state is to be determined from available data on the process at later 
instants of time. 

~le need to formulate these problems arises from the great difficulties encountered in 
experimental determination of aforementioned thermophysical parameters and by a natural 
desire to utilize methods of mathematical simulation for their identification. 

Institute of Problems in Machine Design, Academy of Sciences of the Ukrainian SSR, 
Kharkov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 6, pp. 1119-1123, 
December, 1981. Original article submitted September 16, 1980. 
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